Applications of Cayley Graphs
نویسندگان
چکیده
This paper demonstrates the power of the Cayley graph approach to solve specific applications , such as rearrangement problems and the design of interconnection networks for parallel CPU's. Recent results of the authors for efficient use of Cayley graphs are used here in exploratory analysis to extend recent results of Babai et al. on a family of trivalent Cayley graphs associated with P SL 2 (p). This family and its subgroups are important as a model for intercon-nection networks of parallel CPU's. The methods have also been used to solve for the first time problems which were previously too large, such as the diameter of Rubik's 2 × 2 × 2 cube. New results on how to generalize the methods to rearrangement problems without a natural group structure are also presented. 1. Introduction Each finite group G, together with a generating set Φ, determines a directed graph called a Cayley graph. Once a Cayley graph has been constructed for G, it is possible to obtain algorithmic solutions to the following problems: describe a complete set of rewriting rules for G relative to some lexicographic plus length ordering on the words of Φ [9]; obtain a set of defining relations for G in terms of Φ [6]; and find a word in Φ of minimal length that represents a specified element of G. The last problem is called the minimal word problem for G. The solution of the minimal word problem provides an optimal strategy for many rearrangement problems, where the elements of the generating set have some physical significance. These include problems in communications, which can be viewed as token movements on graphs [11], as well as such popular puzzles as Rubik's cube.
منابع مشابه
On the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملCayley graph associated to a semihypergroup
The purpose of this paper is the study of Cayley graph associated to a semihypergroup(or hypergroup). In this regards first we associate a Cayley graph to every semihypergroup and then we study theproperties of this graph, such as Hamiltonian cycles in this graph. Also, by some of examples we will illustrate the properties and behavior of these Cayley graphs, in particulars we show that ...
متن کاملOn the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کامل